About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EuroSys 2022
Conference paper
State Machine Replication Scalability Made Simple
Abstract
Consensus, state machine replication (SMR) and total order broadcast (TOB) protocols are notorious for being poorly scalable with the number of participating nodes. Despite the recent race to reduce overall message complexity of leader-driven SMR/TOB protocols, scalability remains poor and the throughput is typically inversely proportional to the number of nodes. We present Insanely Scalable State Machine Replication, a generic construction to turn leader-driven protocols into scalable multi-leader ones. For our scalable SMR construction we use a novel primitive called Sequenced (Total Order) Broadcast (SB) which we wrap around PBFT, HotStuff and Raft leader-driven protocols to make them scale. Our construction is general enough to accommodate most leader-driven ordering protocols (BFT or CFT) and make them scale. Our implementation improves the peak throughput of PBFT, HotStuff, and Raft by 37x, 56x, and 55x, respectively, at a scale of 128 nodes.