About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physica A: Statistical Mechanics and its Applications
Paper
Spinodal decomposition in binary fluids under shear flow
Abstract
We discuss the effects of shear rates on the structure, rheology and kinetics of phase separation in binary fluids through numerical Langevin simulations in both two- and three-dimensions. Our major findings are as follows: (1) shear flow distorts the isotropy properties in normal spinodal decomposition. Under stronger shear, a string phase appears; (2) domains grow differently in directions parallel and perpendicular to the flow direction; (3) excess shear viscosities due to shear flow have a characteristic peak as a function of shear rates. We compare our findings with the experimental data and simulation results which do not incorporate hydrodynamics.