About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Spin susceptibility of tetrathiafulvalene tetracyanoquinodimethane, TTF-TCNQ, in the semiconducting regime: Comparison with conductivity
Abstract
New spin-susceptibility data, determined by electron-spin resonance on single crystals, are reported below the 53-K metal-semiconductor transition in tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ. The measured susceptibility is decomposed into the TTF and TCNQ contributions. Each of these contributions behave differently through the 38- and 53-K phase transitions, allowing us to determine the respective roles of the two stacks in these transitions. We conclude that the TCNQ stack drives the transition at 53 K and that the TTF stack susceptibility is most affected by the 38-K transition. In addition, the temperature dependence of the TTF spin susceptibility is compared to that of the dc conductivity on samples from the same batch. We find that for T<38 K their activation energies are quite different, ∼ 100-125 K for the susceptibility and ∼ 220 K for the conductivity, which is believed to be primarily on the TTF stack. Three explanations are offered to account for this difference in activation energies: (a) intramolecular Coulomb energies are significant for the TTF stack, (b) the mobility of electrons on the TTF stack is activated, and (c) existence of microdomains and amplitude solitons. © 1977 The American Physical Society.