About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry Letters
Paper
Spin-Flip Unitary Coupled Cluster Method: Toward Accurate Description of Strong Electron Correlation on Quantum Computers
Abstract
Quantum computers have emerged as a promising platform to simulate strong electron correlation that is crucial to catalysis and photochemistry. However, owing to the choice of a trial wave function employed in the variational quantum eigensolver (VQE) algorithm, accurate simulation is restricted to certain classes of correlated phenomena. Herein, we combine the spin-flip (SF) formalism with the unitary coupled cluster with singles and doubles (UCCSD) method via the quantum equation-of-motion (qEOM) approach to allow for an efficient simulation of a large family of strongly correlated problems. We show that the developed qEOM-SF-UCCSD/VQE method outperforms its UCCSD/VQE counterpart for simulation of the cis-trans isomerization of ethylene, and the automerization of cyclobutadiene and the predicted qEOM-SF-UCCSD/VQE barrier heights are in a good agreement with the experimentally determined values. The developments presented herein will further stimulate the investigation of this approach for simulations of other types of correlated/entangled phenomena on quantum computers.