About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLSI-SoC 2023
Conference paper
Sparsity Controllable Hyperdimensional Computing for Genome Sequence Matching Acceleration
Abstract
In this paper, we propose a Hyper-Dimensional genome analysis platform. Instead of working with original sequences, our method maps the genome sequences into high-dimensional space and performs sequence matching with simple and parallel similarity searches. At the algorithm level, we revisit the sequence searching with brain-like memorization that Hyper-Dimensional computing natively supports. Instead of working on the original data, we map all data points into high-dimensional space, enabling the main sequence searching operations to process in a hardware-friendly way. We accordingly design a density-aware FPGA implementation. Our solution searches the similarity of an encoded query and large-scale genome library through different chunks. We exploit the holographic representation of patterns to stop search operations on libraries with a lower chance of a match. This translates our computation from dense to highly sparse just after a few chuck-based searches. Our evaluation shows that our accelerator can provide 46× speedup and 188× energy efficiency improvement compared to a state-of-the-art GPU implementation. Results show that our accelerator achieves up to 3440.6 GCUPS using a single Xilinx Alveo U280 board.