Conference paper

Solder-reflowable single-mode fiber array photonics assembly in high-throughput manufacturing facilities

View publication


Single-mode integrated photonics assembly is challenging due to the tight alignment required for optical connections. To address this, we have developed a parallelized fiber assembly process using self-alignment of fiber arrays in V-grooves defined on the photonic chip. This approach is compatible with standard automated high-throughput pick and place tools, thus improving the scalability and cost-efficiency of photonic packaging. We describe our efforts toward increasing the assembly throughput as well as making the photonic connections compatible with high temperatures from downstream microelectronic assembly processes, such as lead-free solder reflows. The ability to survive these higher temperatures allows the pretesting of optical engines and paves the way for true co-integration of photonics and electronics. We have shown that attaching fibers to chips using multiple adhesives with partitioning of their function provides substantial gains in both throughput and reliability at a relatively small cost of dispense complexity. The fibers are tacked in place with lengthy adhesive cures performed in a batch process outside of the placement tool so as not to impact the placement tool's throughput. This approach allows for strong long term structural integrity along with optimized optical index matching between the fiber and the waveguide coupler of the photonic dies. Not only did we observe the same peak optical performance that we previously reported, but we have also demonstrated no experimentally significant optical penalty after 5x lead-free solder reflows, in operational temperature between -15°C and 150°C and, after aggressive microelectronic environmental stressing going beyond the parameters traditionally used in optics. The ability to embed single mode optics in the first level package is a disruptive capability contributing to enable the high-density interconnects needed to meet the ever-increasing bandwidth demands for data communication. We discuss the benefits of such configurations, as well as the challenges for thermal management and system yields.