About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Journal of Computational Geometry and Applications
Paper
Skew Voronoi diagrams
Abstract
On a tilted plane T in three-space, skew distances are defined as the Euclidean distance plus a multiple of the signed difference in height. Skew distances may model realistic environments more closely than the Euclidean distance. Voronoi diagrams and related problems under this kind of distances are investigated. A relationship to convex distance functions and to Euclidean Voronoi diagrams for planar circles is shown, and is exploited for a geometric analysis and a plane-sweep construction of Voronoi diagrams on T. An output-sensitive algorithm running in time O(n log h) is developed, where n and h are the numbers of sites and non-empty Voronoi regions, respectively. The all nearest neighbors problem for skew distances, which has certain features different from its Euclidean counterpart, is solved in O(n log n) time.