About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2023
Poster
Scalable Optimal Multiway-Split Decision Trees with Constraints
Abstract
There has been a surge of interest in learning optimal decision trees using mixed-integer programs (MIP) in recent years, as heuristic-based methods do not guarantee optimality and find it challenging to incorporate constraints that are critical for many practical applications. However, existing MIP methods which build on an arc-based formulation do not scale well as the number of binary variables is in the order of , where and refer to the depth of the tree and the size of the dataset. Moreover, they can only handle sample-level constraints and linear metrics. In this paper, we propose a novel path-based MIP formulation where the number of decision variables is independent of . We present a scalable column generation framework to solve the MIP optimally. Our framework produces a multiway-split tree which is more interpretable than the typical binary-split trees due to its shorter rules. Our method can handle nonlinear metrics such as F1 score and incorporate a broader class of constraints. We demonstrate its efficacy with extensive experiments. We present results on datasets containing up to 1,008,372 samples while existing MIP-based decision tree models do not scale well on data beyond a few thousand points. We report superior or competitive results compared to the state-of-art MIP-based methods with up to a 24X reduction in runtime.