# Rooted spanning trees in tournaments

## Abstract

A tournament of order n is an orientation of a complete graph with n vertices, and is specified by its vertex set V(T) and edge set E(T). A rooted tree is a directed tree such that every vertex except the root has in-degree 1, while the root has in-degree 0. A rooted k-tree is a rooted tree such that every vertex except the root has out-degree at most k; the out-degree of the root can be larger than k. It is well-known that every tournament contains a rooted spanning tree of depth at most 2; and the root of such a tree is also called a king in the literature. This result was strengthened to the following one: Every tournament contains a rooted spanning 2-tree of depth at most 2. We prove that every tournament of order n ≥ 800 contains a spanning rooted special 2-tree in this paper, where a rooted special 2-tree is a rooted 2-tree of depth 2 such that all except possibly one, non-root, non-leaf vertices, have out-degree 2 in the tree. © Springer-Verlag 2000.