Investigations of silicon nano-crystal floating gate memories
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
We explore the relaxation of photoexcited graphene by solving a transient Boltzmann transport equation with electron-phonon (e-ph) and electron-electron (e-e) scattering. Simulations show that when the excited carriers are relaxed by e-ph scattering only, a population inversion can be achieved at energies determined by the photon energy. However, e-e scattering quickly thermalizes the carrier energy distributions washing out the negative optical conductivity peaks. The relaxation rates and carrier multiplication effects are presented as a function of photon energy, graphene doping, and dielectric constant. © 2011 American Physical Society.
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989
Peter J. Price
Surface Science
K.N. Tu
Materials Science and Engineering: A