Publication
SIGIR 2014
Conference paper

Recommending social media content to community owners

View publication

Abstract

Online communities within the enterprise offer their leaders an easy and accessible way to attract, engage, and influence others. Our research studies the recommendation of social media content to leaders (owners) of online communities within the enterprise. We developed a system that suggests to owners new content from outside the community, which might interest the community members. As online communities are taking a central role in the pervasion of social media to the enterprise, sharing such recommendations can help owners create a more lively and engaging community. We compared seven different methods for generating recommendations, including content-based, member-based, and hybridization of the two. For member-based recommendations, we experimented with three groups: owners, active members, and regular members. Our evaluation is based on a survey in which 851 community owners rated a total of 8,218 recommended content items. We analyzed the quality of the different recommendation methods and examined the effect of different community characteristics, such as type and size. Copyright © 2014 ACM.

Date

Publication

SIGIR 2014

Authors

Share