Publication
ICCV 2023
Workshop paper

RCD-SGD: Resource-Constrained Distributed SGD in Heterogeneous Environment Via Submodular Partitioning

Abstract

The convergence of SGD based distributed training algorithms is tied to the data distribution across workers. Standard partitioning techniques try to achieve equal-sized partitions with per-class population distribution in proportion to the total dataset. Partitions having the same overall population size or even the same number of samples per class may still have Non-IID distribution in the feature space. In heterogeneous computing environments, when devices have different computing capabilities, even-sized partitions across devices can lead to the straggler problem in distributed SGD. We develop a framework for distributed SGD in heterogeneous environments based on a novel data partitioning algorithm involving submodular optimization. Our data partitioning algorithm explicitly accounts for resource heterogeneity across workers while achieving similar class-level feature distribution and maintaining class balance. Based on this algorithm, we develop a distributed SGD framework that can accelerate existing SOTA distributed training algorithms by up to 32%.

Date

02 Oct 2023

Publication

ICCV 2023

Authors

Topics

Share