About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Quantum dynamics of a particle in a fermionic environment
Abstract
The reduced density operator of a particle coupled to a fermionic environment (metal electrons) is written in terms of a Feynman-Vernon influence functional. Two different approaches are used in order to achieve this goal. Firstly, the environmental interacting electron gas is treated in RPA and the coupling is correctly accounted for up to second order in perturbation theory. Then the local and tight-binding models are studied. For the latter a second approach for obtaining the influence functional is used in the narrow-band limit. It is found that the popular representation of the environment in terms of a single set of harmonic oscillators is not feasible unless the particle is confined to move in a local region of radial extension. © IOP Publishing Ltd.