About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CF 2019
Conference paper
Quantum Computing Simulator on a Heterogenous HPC System
Abstract
Quantum computing simulation on a classical computer is difficult due to the exponential runtime and memory overhead. Previous work addresses the difficulty by utilizing multiple Graphical Processing Units (GPUs) and multi-node computers. GPUs are efficient for handling runtime issues but have limited total accessible memory space. Meanwhile, the memory of a multi-node computer can be scaled to the petabytes order, but its bandwidth for access from host computers (CPUs) is narrow. To simultaneously accelerate simulation and enlarge the total memory space, we propose a heterogeneous parallelization approach by combining GPUs and CPUs. Our simulator allocates memory to the GPUs first, and then to the CPUs. It thus accelerates simulation by using the full capabilities of the GPUs if memory for the simulation fits in the GPUs on a cluster. Allocating memory to the CPUs reduces benefits of the GPUs but enlarges the capacity of qubits in the simulation. In such case, it can exploit the memory of the GPUs to add one more qubit in the simulation if the size of memory in a node is the power of two (such as 512GB). We show empirical performance evaluations of our simulator in a distributed environment of POWER9.