About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CVPRW 2020
Conference paper
Privacy enhanced decision tree inference
Abstract
In many areas in machine learning, decision trees play a crucial role in classification and regression. When a decision tree based classifier is hosted as a service in a critical application with the need for privacy protection of the service as well as the user data, fully homomorphic encrypted can be employed. However, a decision node in a decision tree can't be directly implemented in FHE. In this paper, we describe an end-to-end approach to support privacyenhanced decision tree classification using IBM supported open-source library HELib. Using several options for building a decision node and employing oblivious computations coupled with an argmax function in FHE we show that a highly secure and trusted decision tree service can be enabled.