About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Combinatorica
Paper
Primal-dual approximation algorithms for feedback problems in planar graphs
Abstract
Given a subset of cycles of a graph, we consider the problem of finding a minimum-weight set of vertices that meets all cycles in the subset. This problem generalizes a number of problems, including the minimum-weight feedback vertex set problem in both directed and undirected graphs, the subset feedback vertex set problem, and the graph bipartization problem, in winch one must remove a minimum-weight set of vertices so that the remaining graph is bipartite. We give a 9/4-approximation algorithm for the general problem in planar graphs, given that the subset of cycles obeys certain properties. This results in 9/4-approximation algorithms for the aforementioned feedback and bipartization problems in planar graphs. Our algorithms use the primal-dual method for approximation algorithms as given in Goemans and Williamson [16]. We also show that our results have an interesting bearing on a conjecture of Akiyama and Watanabe [2] on the cardinality of feedback vertex sets in planar graphs.