About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
STOC 2022
Conference paper
Positive spectrahedra: invariance principles and pseudorandom generators
Abstract
In a recent work, O'Donnell, Servedio and Tan (STOC 2019) gave explicit pseudorandom generators (s) for arbitrary m-facet polytopes in n variables with seed length poly-logarithmic in m,n, concluding a sequence of works in the last decade, that was started by Diakonikolas, Gopalan, Jaiswal, Servedio, Viola (SICOMP 2010) and Meka, Zuckerman (SICOMP 2013) for fooling linear and polynomial threshold functions, respectively. In this work, we consider a natural extension of s for intersections of positive spectrahedra. A positive spectrahedron is a Boolean function f(x)=[x1A1+g +xnAn 1/4 B] where the Ais are k× k positive semidefinite matrices. We construct explicit s that-fool "regular"width-M positive spectrahedra (i.e., when none of the Ais are dominant) over the Boolean space with seed length (logk,logn, M, 1/). Our main technical contributions are the following: We first prove an invariance principle for positive spectrahedra via the well-known Lindeberg method. As far as we are aware such a generalization of the Lindeberg method was unknown. Second, we prove an upper bound on noise sensitivity and a Littlewood-Offord theorem for positive spectrahedra. Using these results, we give applications for constructing s for positive spectrahedra, learning theory, discrepancy sets for positive spectrahedra (over the Boolean cube) and s for intersections of structured polynomial threshold functions.