About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physics Condensed Matter
Paper
Phases of Ca from first principles
Abstract
Structures and properties of many of the phases of Ca under pressure are calculated from first principles by a systematic procedure that minimizes total energy E with respect to structure under the constraint of constant volume V. The minima of E are followed on successive sweeps of lattice parameters for 11 of 14 Bravais symmetries for one-atom-per-cell structures. The structures include the four orthorhombic phases. Also included are the hexagonal close-packed and cubic diamond phases with two atoms per primitive cell. No uniquely orthorhombic phases are found; all one-atom orthorhombic phases over a mega-bar pressure range are identical to higher-symmetry phases. The simple cubic phase is shown to be stable where it is the ground state. The number of distinct one-atom phases reduces to five plus the two two-atom phases. For each of these phases the Gibbs free energy at pressure p, G(p), is calculated for a non-vibrating lattice; the functions G(p) give the ground state at each p, the relative stabilities of all phases and the thermodynamic phase transition pressures for all phase transitions over a several-megabar range. © 2009 IOP Publishing Ltd.