About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Oxidation-enhanced or retarded diffusion and the growth or shrinkage of oxidation-induced stacking faults in silicon
Abstract
An analysis of the conditions for obtaining oxidation-enhanced or retarded dopant diffusions (OED or ORD), in accordance with the stacking fault growth/shrinkage phenomena, is carried out for the oxidation of Si by assuming that vacancy and Si self-interstitials coexist at high temperatures and that during oxidation a local equilibrium of point defects is attained. It is shown that the Sb ORD data can be explained quantitatively. Under most oxidation conditions the SiO2-Si interface acts as a source of Si self-interstitials, but at sufficiently high temperatures and long oxidation times the SiO2-Si interface behaves as a sink for Si self-interstitials (or equivalently as a source of vacancies). We suggest a model for this sink behavior in terms of the formation of SiO molecules at the interface and of their subsequent diffusion into the SiO2 film.