About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2021
Conference paper
Outlier Impact Characterization for Time Series Data
Abstract
For time series data, certain types of outliers are intrinsi- cally more harmful for parameter estimation and future pre- dictions than others, irrespective of their frequency. In this paper, for the first time, we study the characteristics of such outliers through the lens of the influence functional from ro- bust statics. In particular, we consider the input time series as a contaminated process, with the recurring outliers gen- erated from an unknown contaminating process. Then we leverage the influence functional to understand the impact of the contaminating process on parameter estimation. The in- fluence functional results in a multi-dimensional vector that measures the sensitivity of the predictive model to the con- taminating process, which can be challenging to interpret es- pecially for models with a large number of parameters. To this end, we further propose a comprehensive single-valued metric (the SIF) to measure outlier impacts on future predic- tions. It provides a quantitative measure regarding the outlier impacts, which can be used in a variety of scenarios, such as the evaluation of outlier detection methods, the creation of more harmful outliers, etc. The empirical results on multi- ple real data sets demonstrate the effectivenss of the proposed SIF metric.