About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Inverse Problems and Imaging
Paper
Optimal estimation of l 1-regularization prior from a regularized empirical bayesian risk standpoint
Abstract
We address the problem of prior matrix estimation for the solu- tion of l 1-regularized ill-posed inverse problems. From a Bayesian viewpoint, we show that such a matrix can be regarded as an influence matrix in a multi- variate l 1-Laplace density function. Assuming a training set is given, the prior matrix design problem is cast as a maximum likelihood term with an additional sparsity-inducing term. This formulation results in an unconstrained yet non- convex optimization problem. Memory requirements as well as computation of the nonlinear, nonsmooth sub-gradient equations are prohibitive for large-scale problems. Thus, we introduce an iterative algorithm to design efficient priors for such large problems. We further demonstrate that the solutions of ill-posed inverse problems by incorporation of l 1-regularization using the learned prior matrix perform generally better than commonly used regularization techniques where the prior matrix is chosen a-priori. © 2012 American Institute of Mathematical Sciences.