About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ITW 2013
Conference paper
On the information complexity of cascaded norms with small domains
Abstract
We consider the problem of estimating cascaded norms in a data stream, a well-studied generalization of the classical norm estimation problem, where the data is aggregated in a cascaded fashion along multiple attributes. We show that when the number of attributes for each item is at most d, then estimating the cascaded norm Lk○L1 requires space Ω(d·n1-2/k) for every d = O(n1/k). This result interpolates between the tight lower bounds known previously for the two extremes of d = 1 and d = Θ(n1/k) [1]. The proof of this result uses the information complexity paradigm that has proved successful in obtaining tight lower bounds for several well-known problems. We use the above data stream problem as a motivation to sketch some of the key ideas of this paradigm. In particular, we give a unified and a more general view of the key negative-type inequalities satisfied by the transcript distributions of communication protocols. © 2013 IEEE.