About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMOD/PODS/ 2010
Conference paper
Information complexity: A tutorial
Abstract
The recent years have witnessed the overwhelming success of algorithms that operate on massive data. Several computing paradigms have been proposed for massive data set algorithms such as data streams, sketching, sampling etc. and understanding their limitations is a fundamental theoretical challenge. In this survey, we describe the information complexity paradigm that has proved successful in obtaining tight lower bounds for several well-known problems. Information complexity quantifies the amount of information about the inputs that must be necessarily propagated by any algorithm in solving a problem. We describe the key ideas of this paradigm, and highlight the beautiful interplay of techniques arising from diverse areas such as information theory, statistics and geometry. © 2010 ACM.