About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2023
Workshop paper
On Robustness-Accuracy Characterization of Large Language Models using Synthetic Datasets
Abstract
Despite the impressive capability of large language models (LLMs) in solving different downstream tasks, new concerns about proper performance evaluation have been raised, especially for test-data leakage caused by accidentally including them during pretraining, or by indirectly exposing them through API calls for evaluation. Motivated by these, in this paper, we propose a new evaluation workflow that generates steerable synthetic language datasets and proxy tasks for benchmarking the performance of pertained LLMs on sentence classification tasks. This approach allows for better characterization of the joint analysis on the robustness and accuracy of LLMs without risking sensitive information leakage. Verified on various pretrained LLMs, the proposed approach demonstrates promising high correlation with real downstream performance.