About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Discrete Mathematics
Paper
On nearly orthogonal lattice bases and random lattices
Abstract
We study lattice bases where the angle between any basis vector and the linear subspace spanned by the other basis vectors is at least π/3 radians; we denote such bases as "nearly orthogonal." We show that a nearly orthogonal lattice basis always contains a shortest lattice vector. Moreover, we prove that if the basis vector lengths are "nearly equal," then the basis is the unique nearly orthogonal lattice basis up to multiplication of basis vectors by ±1. We also study random lattices generated by the columns of random matrices with n rows and m ≤ n columns. We show that if m ≤ en, with c ≈ 0.071, then the random matrix forms a nearly orthogonal basis for the random lattice with high probability for large n and almost surely as n tends to infinity. Consequently, the columns of such a random matrix contain the shortest vector in the random lattice. Finally, we discuss an interesting JPEG image compression application where nearly orthogonal lattice bases play an important role. © 2007 Society for Industrial and Applied Mathematics.