About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Numerical micromagnetics of small particles
Abstract
The results of applying our micromagnetic code to a homogeneous spherical particle which is large enough to support inhomogeneous magnetization are given. For smaller particles, magnetization reversal is by coherent rotation. Larger particles initially exhibit curling as the applied magnetic field is reduced from a saturating value. Then one of two new behaviours is observed: For weak crystalline anisotropy, the axis of the curling state rotates and bends, and the magnetization reversal process is reversible, or nearly so. For strong crystalline anisotropy, a sudden discontinuous transition occurs to a vortex state with axis perpendicular to the anisotropy axis, and the vortex moves across the particle as reversal of the applied magnetic field continued. The formation and disappearance of the vortex are irreversible but all other aspects of the process are reversible. © 1988 IEEE