Frank Stem
C R C Critical Reviews in Solid State Sciences
We demonstrate significantly improved performance of a nonvolatile polymeric ferroelectric field effect transistor (FeFET) memory using nanoscopic confinement of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) within self-assembled organosilicate (OS) lamellae. Periodic OS lamellae with 30 nm in width and 50 nm in periodicity were templated using block copolymer self-assembly. Confined crystallization of PVDF-TrFE not only significantly reduces gate leakage current but also facilitates ferroelectric polarization switching. These benefits are due to the elimination of structural defects and the development of an effective PVDF-TrFE crystal orientation through nanoconfinement. A bottom gate FeFET fabricated using a single-crystalline triisopropylsilylethynyl pentacene channel and PVDF-TrFE/OS hybrid gate insulator shows characteristic source-drain current hysteresis that is fully saturated at a programming voltage of ±8 V with an ON/OFF current ratio and a data retention time of approximately 102 and 2 h, respectively. © 2011 American Chemical Society.
Frank Stem
C R C Critical Reviews in Solid State Sciences
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Sharee J. McNab, Richard J. Blaikie
Materials Research Society Symposium - Proceedings
Ellen J. Yoffa, David Adler
Physical Review B