About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI/IAAI 2015
Conference paper
Noise-robust semi-supervised learning by large-scale sparse coding
Abstract
This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noiserobust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding problem so that noise reduction can be imposed upon the noisy initial labels. Furthermore, to keep the scalability of noise-robust semi-supervised learning over very large data, we make use of both nonlinear approximation and dimension reduction techniques to solve this generalized sparse coding problem in linear time and space complexity. Finally, we evaluate the proposed algorithm in the challenging task of large-scale semi-supervised image classification with only few noisy initial labels. The experimental results on several benchmark image datasets show the promising performance of the proposed algorithm.