About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE/ACM TON
Paper
Network Scheduling and Compute Resource Aware Task Placement in Datacenters
Abstract
To improve the performance of data-intensive applications, existing datacenter schedulers optimize either the placement of tasks or the scheduling of network flows. The task scheduler strives to place tasks close to their input data (i.e., maximize data locality) to minimize network traffic, while assuming fair sharing of the network. The network scheduler strives to finish flows as quickly as possible based on their sources and destinations determined by the task scheduler, while the scheduling is based on flow properties (e.g., size, deadline, and correlation) and not bound to fair sharing. Inconsistent assumptions of the two schedulers can compromise the overall application performance. In this paper, we propose NEAT+, a task scheduling framework that leverages information from the underlying network scheduler and available compute resources to make task placement decisions. The core of NEAT+ is a task completion time predictor that estimates the completion time of a task under given network condition and a given network scheduling policy. NEAT+ leverages the predicted task completion times to minimize the average completion time of active tasks. Evaluation using ns2 simulations and real-testbed shows that NEAT+ improves application performance by up to 3.7times for the suboptimal network scheduling policies and up to 33% for the optimal network scheduling policy.