About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Trans. Inf. Theory
Paper
Near-optimal coresets for least-squares regression
Abstract
We study the (constrained) least-squares regression as well as multiple response least-squares regression and ask the question of whether a subset of the data, a coreset, suffices to compute a good approximate solution to the regression. We give deterministic, low-order polynomial-time algorithms to construct such coresets with approximation guarantees, together with lower bounds indicating that there is not much room for improvement upon our results. © 1963-2012 IEEE.