About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Algorithms
Paper
Multiple loci selection with multi-way Epistasis in coalescence with recombination
Abstract
As studies move into deeper characterization of the impact of selection through non-neutral mutations in whole genome population genetics, modeling for selection becomes crucial. Moreover, epistasis has long been recognized as a significant component in understanding the evolution of complex genetic systems. We present a backward coalescent model, EpiSimRA, that accommodates multiple loci selection, with multi-way (k-way) epistasis for any arbitrary k. Starting from arbitrary extant populations with epistatic sites, we trace the Ancestral Recombination Graph (ARG), sampling relevant recombination and coalescent events. Our framework allows for studying different complex evolutionary scenarios in the presence of selective sweeps, positive and negative selection with multiway epistasis. We also present a forward counterpart of the coalescent model based on aWright-Fisher (WF) process, which we use as a validation framework, comparing the hallmarks of the ARG between the two. We provide the first framework that allows a nose-to-nose comparison of multiway epistasis in a coalescent simulator with its forward counterpart with respect to the hallmarks of the ARG. We demonstrate, through extensive experiments, that EpiSimRA is consistently superior in terms of performance (seconds vs. hours) in comparison to the forward model without compromising on its accuracy.