Publication
MRS Bulletin
Paper

Modeling slip and flow enhancement of water in carbon nanotubes

View publication

Abstract

Transport properties of fluids in nanopores are of both fundamental as well as practical interest. Water flow in carbon nanotubes (CNTs) has received significant attention since the early 2000s for technological applications of CNTs. In this article, we provide a brief overview of modeling the slip and flow enhancement of water in CNTs. A number of experimental and computational studies have found water to flow very fast in CNTs, but the measured flow rates, which are high compared to classical hydrodynamics predictions, are scattered over 2-5 orders of magnitude. Slip lengths of 1 to 500,000 nm, resulting in almost zero to 500,000 flow enhancement, are reported for water in CNTs with diameters of 0.8 to 10 nm. We highlight some challenges in modeling fluid flow in nanopores and outline a few research directions that may resolve the order of slip and flow enhancement of water in CNTs in computational studies.

Date

12 Apr 2017

Publication

MRS Bulletin

Authors

Share