About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Membrane Science
Paper
Analytical Diffusion Mechanism (ADiM) model combining specular, Knudsen and surface diffusion
Abstract
We present a unified transport model that combines specular, Knudsen and surface diffusion mechanisms, termed the Analytical Diffusion Mechanism (ADiM) model. The ADiM model uniquely describes the transport behaviour of the bulk gas and adsorbed phase taking place in rough and smooth nanopores. Experiments and molecular simulations of nitrogen flow through aligned nanotube-based membranes are used to verify the model. In addition, we explore entrance effects using a suction energy mechanism that is compatible with ADiM and can accelerate gas permeance by an order of magnitude. Finally, ADiM is used to assess the effect of tube size on post-combustion carbon dioxide separation from fossil fuel plants.