About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ED
Paper
Modeling of Breakdown-Limited Endurance in Spin-Transfer Torque Magnetic Memory under Pulsed Cycling Regime
Abstract
Perpendicular spin-transfer torque (p-STT) magnetic memory is gaining increasing interest as a candidate for storage-class memory, embedded memory, and possible replacement of static/dynamic memory. All these applications require extended cycling endurance, which should be based on a solid understanding and accurate modeling of the endurance failure mechanisms in the p-STT device. This paper addresses cycling endurance of p-STT memory under pulsed electrical switching. We show that endurance is limited by the dielectric breakdown of the magnetic tunnel junction stack, and we model endurance lifetime by the physical mechanisms leading to dielectric breakdown. The model predicts STT endurance as a function of applied voltage, pulsewidth, pulse polarity, and delay time between applied pulses. The dependence of the endurance on sample area is finally discussed.