About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISMIR 2016
Conference paper
Mining online music listening trajectories
Abstract
Understanding the listening habits of users is a valuable undertaking for musicology researchers, artists, consumers and online businesses alike. With the rise of Online Music Streaming Services (OMSSs), large amounts of user behavioral data can be exploited for this task. In this paper, we present SWIFT-FLOWS, an approach that models user listening habits in regards to how user attention transitions between artists. SWIFT-FLOWS combines recent advances in trajectory mining, coupled with modulated Markov models as a means to capture both how users switch attention from one artist to another, as well as how users fixate their attention in a single artist over short or large periods of time. We employ SWIFT-FLOWS on OMSSs datasets showing that it provides: (1) semantically meaningful representation of habits; (2) accurately models the attention span of users.