About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SmartGridComm 2015
Conference paper
Machine learning for inferring phase connectivity in distribution networks
Abstract
The connectivity model of a power distribution network can easily become outdated due to system changes occurring in the field. Maintaining and sustaining an accurate connectivity model is a key challenge for distribution utilities worldwide. This work focuses on inferring customer to phase connectivity using machine learning techniques. Using voltage time series measurements collected from customer smart meters as the feature set for training classifiers, we study the performance of supervised, semi-supervised and unsupervised techniques. We report analysis and field validation results based on real smart meter measurements collected from three feeder circuits of a large distribution network in North America.