About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Luminescence-center-mediated excitation as the dominant Er sensitization mechanism in Er-doped silicon-rich Si O2 films
Abstract
The structural and optical properties of erbium-doped silicon-rich silica samples containing 12 at. % of excess silicon and 0.63 at. % of erbium are studied as a function of annealing temperature in the range 600-1200°C. Indirect excitation of Er3+ ions is shown to be present for all annealing temperatures, including annealing temperatures well below 1000°C for which no silicon nanocrystals are observed. Two distinct efficient (ηtr >60%) transfer mechanisms responsible for Er3+ excitation are identified: a fast transfer process (τtr <80 ns) involving isolated luminescence centers (LCs), and a slow transfer process (τtr ∼4-100 μs) involving excitation by quantum confined excitons inside Si nanocrystals. The LC-mediated excitation is shown to be the dominant excitation mechanism for all annealing temperatures. The presence of a LC-mediated excitation process is deduced from the observation of an annealing-temperature-independent Er3+ excitation rate, a strong similarity between the LC and Er3+ excitation spectra, as well as an excellent correspondence between the observed LC-related emission intensity and the derived Er3+ excitation density for annealing temperatures in the range of 600-1000°C. The proposed interpretation provides an alternative explanation for several observations existing in the literature. © 2007 The American Physical Society.