About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SODA 2010
Conference paper
Lower bounds for edit distance and product metrics via Poincaré-type inequalities
Abstract
We prove that any sketching protocol for edit distance achieving a constant approximation requires nearly logarithmic (in the strings' length) communication complexity. This is an exponential improvement over the previous, doubly-logarithmic, lower bound of [Andoni-Krauthgamer, FOCS'07]. Our lower bound also applies to the Ulam distance (edit distance over non-repetitive strings). In this special case, it is polynomially related to the recent upper bound of [Andoni-Indyk-Krauthgamer, SODA'09]. From a technical perspective, we prove a direct-sum theorem for sketching product metrics that is of independent interest. We show that, for any metric X that requires sketch size which is a sufficiently large constant, sketching the max-product metric ℓ∞d(X) requires Ω(d) bits. The conclusion, in fact, also holds for arbitrary two-way communication. The proof uses a novel technique for information complexity based on Poincaré inequalities and suggests an intimate connection between non-embeddability, sketching and communication complexity. Copyright © by SIAM.