About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of the Optical Society of America A: Optics and Image Science, and Vision
Paper
Light propagation and scattering in stratified media: A green’s tensor approach
Abstract
We present a new technique for computing the electromagnetic field that propagates and is scattered in three-dimensional structures formed by bodies embedded in a stratified background. This fully vectorial technique is based on the Green’s tensor associated with the stratified background. Its advantage lies in the fact that only the scatterers must be discretized, the stratified background being accounted for in the Green’s tensor. Further, the boundary conditions at the different material interfaces as well as at the edges of the computation window are perfectly and automatically fulfilled. Several examples illustrate the utilization of the technique for the modeling of photonic circuits (integrated optical waveguides), the study of the optics of metal (surface plasmons), and the development of new optical lithography techniques. © 2001 Optical Society of America.