About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Neural Computation
Paper
Learning bounds for kernel regression using effective data dimensionality
Abstract
Kernel methods can embed finite-dimensional data into infinite-dimensional feature spaces. In spite of the large underlying feature dimensionality, kernel methods can achieve good generalization ability. This observation is often wrongly interpreted, and it has been used to argue that kernel learning can magically avoid the "curse-of-dimensionality" phenomenon encountered in statistical estimation problems. This letter shows that although using kernel representation, one can embed data into an infinite-dimensional feature space; the effective dimensionality of this embedding, which determines the learning complexity of the underlying kernel machine, is usually small. In particular, we introduce an algebraic definition of a scale-sensitive effective dimension associated with a kernel representation. Based on this quantity, we derive upper bounds on the generalization performance of some kernel regression methods. Moreover, we show that the resulting convergent rates are optimal under various circumstances. © 2005 Massachusetts Institute of Technology.