About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NMDC 2016
Conference paper
Joule heating effects in nanoscale carbon-based memory devices
Abstract
One of the emerging candidates to bridge the gap between fast but volatile DRAM and non-volatile but slow storage devices is tetrahedral amorphous carbon (ta-C) based memory [1]-[3]. This offers a very good scalability, data retention and sub-5ns switching [2], [3]. Amorphous carbon memory devices can be electrically and optically switched from a high resistance state (HRS) to a low resistance state (LRS) [4]. The electrical conduction in the LRS is thought to be through sp2 clusters that form a conductive filament [4].