About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
GlobalSIP 2018
Conference paper
Is ordered weighted ℓ1 regularized regression robust to adversarial perturbation? a case study on Oscar
Abstract
Many state-of-the-art machine learning models such as deep neural networks have recently shown to be vulnerable to adversarial perturbations, especially in classification tasks. Motivated by adversarial machine learning, in this paper we investigate the robustness of sparse regression models with strongly correlated covariates to adversarially designed measurement noises. Specifically, we consider the family of ordered weighted ℓ1 (OWL) regularized regression methods and study the case of OSCAR (octagonal shrinkage clustering algorithm for regression) in the adversarial setting. Under a norm-bounded threat model, we formulate the process of finding a maximally disruptive noise for OWL-regularized regression as an optimization problem and illustrate the steps towards finding such a noise in the case of OSCAR. Experimental results demonstrate that the regression performance of grouping strongly correlated features can be severely degraded under our adversarial setting, even when the noise budget is significantly smaller than the ground-truth signals.