About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDH 2023
Short paper
Information Flow in Graph Neural Networks: A Clinical Triage Use Case
Abstract
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs. However, efficient training of GNNs remains challenging, with several open research questions. In this paper, we investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs). Specifically, we propose a mathematical model that decouples the GNN connectivity from the connectivity of the graph data and evaluate the performance of GNNs in a clinical triage use case. Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation. Moreover, we show that negative edges play a crucial role in achieving good predictions, and that using too many GNN layers can degrade performance.