About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017
Conference paper
Influence maximisation beyond organisational boundaries
Abstract
We consider the problem of choosing influential members within a social network, in order to disseminate a message as widely as possible. While this so-called problem of influence maximisation has been widely studied, little work considers partially-observable networks, where only part of a network is visible to the decision maker. Yet, this is critical in many applications, where an organisation needs to distribute its message far beyond its boundaries and beyond its usual sphere of influence. In this paper, we show that existing algorithms are not sufficient to handle such scenarios. To address this, we propose a set of novel adaptive algorithms that perform well in partially observable settings, achieving an up to 18% improvement on the non-Adaptive state of the art.