About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Access
Paper
HpGAT: High-order proximity informed graph attention network
Abstract
Graph neural networks (GNNs) have recently made remarkable breakthroughs in the paradigm of learning with graph-structured data. However, most existing GNNs limit the receptive field of the node on each layer to its connected (one-hop) neighbors, which disregards the fact that large receptive field has been proven to be a critical factor in state-of-the-art neural networks. In this paper, we propose a novel approach to appropriately define a variable receptive field for GNNs by incorporating high-order proximity information extracted from the hierarchical topological structure of the input graph. Specifically, multiscale groups obtained from trainable hierarchical semi-nonnegative matrix factorization are used for adjusting the weights when aggregating one-hop neighbors. Integrated with the graph attention mechanism on attributes of neighboring nodes, the learnable parameters within the process of aggregation are optimized in an end-to-end manner. Extensive experiments show that the proposed method (hpGAT) outperforms state-of-the-art methods and demonstrate the importance of exploiting high-order proximity in handling noisy information of local neighborhood.