About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
How to Simulate Quantum Measurement without Computing Marginals
Abstract
We describe and analyze algorithms for classically simulating measurement of an n-qubit quantum state in the standard basis, that is, sampling a bit string from the probability distribution determined by the Born rule. Our algorithms reduce the sampling task to computing poly(n) amplitudes of n-qubit states; unlike previously known techniques they do not require computation of marginal probabilities. Two classes of quantum states are considered: output states of polynomial-size quantum circuits, and ground states of local Hamiltonians with an inverse polynomial spectral gap. We show that our algorithms can significantly accelerate quantum circuit simulations based on tensor network contraction or low-rank stabilizer decompositions. As another striking consequence we obtain the first efficient classical simulation algorithm for measurement-based quantum computation with the surface code resource state on any planar graph and any schedule of measurements.