About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nanotechnology
Paper
Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers
Abstract
We evaluated the potential and limitations of resonating nanomechanical microcantilevers for the detection of mass adsorption. As a test system we used mass addition of gold layers of varying thickness. Our main findings are: (1) A linear increase in mass sensitivity with the square of the mode number - a sensitivity increase of two orders of magnitude is obtained from mode 1 to mode 7 with a minimum sensitivity of 8.6 ag Hz-1 νm-2 and mass resolution of 0.43 pg at mode 7 for a 1 νm thick cantilever. (2) The quality factor increases with the mode number, thus helping to achieve a higher sensitivity. (3) The effective spring constant of the cantilever remains constant for deposition of gold layers up to at least 4% of the cantilever thickness. © IOP Publishing Ltd.