About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Growth, structural, and magnetic properties of high coercivity Co/Pt multilayers
Abstract
Electron beam evaporated Co/Pt multilayers {[Co(tConm)/Pt(1 nm)]10, 0.2<tCo<2 nm} with perpendicular magnetic anisotropy and room temperature coercivities Hc = 2- 15 kOe are studied as a function of growth temperature TG. Hysteresis loops and magnetic force microscopy (MFM) indicate changes in the magnetization reversal mechanism along with a sharp increase in coercivity for TG≳230-250°C. Films grown at TG<230°C (TCo = 0.2-0.4 nm) show micrometer size magnetic domains and rectangular hysteresis indicating magnetization reversal dominated by rapid domain wall motion following nucleation at Hn~Hc. Films grown at TG>250°C show fine-grained MFM features on the sub-100-nm length scale indicating reversal dominated by localized switching of small clusters. High-resolution cross-sectional transmission electron microscopy (TEM) with elemental analysis shows columnar grains extending throughout the multilayer stack. Co depletion and structural defects at the grain boundaries provide a mechanism for exchange decoupling of adjacent grains, which may result in the high coercivities observed. © 2001 American Institute of Physics.