About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review D - Particles, Fields, Gravitation and Cosmology
Paper
Gap domain wall fermions
Abstract
I demonstrate that the chiral properties of domain wall fermions (DWF) in the large to intermediate lattice spacing regime of QCD, 1 to 2 GeV, are significantly improved by adding to the action two standard Wilson fermions with supercritical mass equal to the negative DWF five-dimensional mass. Using quenched DWF simulations I show that the eigenvalue spectrum of the transfer matrix Hamiltonian develops a substantial gap and that the residual mass decreases appreciatively. Furthermore, I confirm that local topology changing remains active and that the hadron spectrum of the added Wilson fermions is above the lattice cutoff and therefore is irrelevant. I argue that this result should also hold for dynamical DWF and furthermore that it should improve the chiral properties of related fermion methods. © 2006 The American Physical Society.