About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SBAC-PAD 2012
Conference paper
FusedOS: Fusing LWK performance with FWK functionality in a heterogeneous environment
Abstract
Traditionally, there have been two approaches to providing an operating environment for high performance computing (HPC). A Full-Weight Kernel(FWK) approach starts with a general-purpose operating system and strips it down to better scale up across more cores and out across larger clusters. A Light-Weight Kernel (LWK) approach starts with a new thin kernel code base and extends its functionality by adding more system services needed by applications. In both cases, the goal is to provide end-users with a scalable HPC operating environment with the functionality and services needed to reliably run their applications. To achieve this goal, we propose a new approach, called Fused OS, that combines the FWK and LWK approaches. Fused OS provides an infrastructure capable of partitioning the resources of a multicoreheterogeneous system and collaboratively running different operating environments on subsets of the cores and memory, without the use of a virtual machine monitor. With Fused OS, HPC applications can enjoy both the performance characteristics of an LWK and the rich functionality of an FWK through cross-core system service delegation. This paper presents the Fused OS architecture and a prototype implementation on Blue Gene/Q. The Fused OS prototype leverages Linux with small modifications as a FWK and implements a user-level LWK called Compute Library (CL) by leveraging CNK. We present CL performance results demonstrating low noise and show micro-benchmarks running with performance commensurate with that provided by CNK. © 2012 IEEE.